

MAINZ Contributions

• WP2 Addressing, manipulating and measuring on single sites D5 Addressing single sites in optical lattices, M2.2

• WP3 Two-qubit gates and compatible stable qubits

D6 Assessment of experimental feasibility for existing qubit encodings and quantum gate schemes, M3.2, M3.5

D7 Novel two-qubit gate schemes, M3.7

• WP4 Generation and characterization of multi-particle entangled states

D8 Experimental generation of multi-particle entanglement in optical lattices, M4.1, M4.2, M4.3, M4.7

D9 Measures and measurement procedures for multi-particle entanglement, M4. I

WP5 Strategies for minimizing decoherence

D11 Experimental realization of optical lattices with minimized decoherence M5.1, M5.3, M5.4, M5.5, M5.6

Robust multi-particle entanglement via spin changing collisions

A. Widera et al., Phys. Rev. Lett., 95,190405, (2005)

 $(\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle)\otimes|0,0\rangle$

Spin Triplet

 $\left|\uparrow\right\rangle_{L}\left|\downarrow\right\rangle_{R}+\left|\downarrow\right\rangle_{L}\left|\uparrow\right\rangle_{R}$

Entangled Bell state

Spin Changing Collisions in an Optical Lattice

How can we detect the Bell pairs? (2)

Quantum Spin Systems in Optical Lattices

Superexchange Coupling in Quantum Dots

Local control of spin states & interactions between spin states.

J.R. Petta et al., Science **309**, 2180 (2005)

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

Quantum Magnetism Second order hopping processes form the basis of superexchange interactions! (see e.g. A. Auerbach, Interacting Electrons and Quantum Magnetism) $\sum_{\langle i,j\rangle} \hat{a}_i^{\dagger} \hat{a}_j + \frac{1}{2} U \sum_i \hat{n}_i (\hat{n}_i - 1)$ $H = -J_{ex} \sum \mathbf{S}_i \cdot \mathbf{S}_j$ $J_{ex} \propto \frac{J^2}{U}$ Ultracold atoms allow tuning of Spin-Hamiltonians $\lambda_{\mu z} = \frac{t_{\mu\uparrow}^2 + t_{\mu\downarrow}^2}{2U_{\uparrow\downarrow}} - \frac{t_{\mu\uparrow}^2}{U_{\uparrow}} - \frac{t_{\mu\downarrow}^2}{U_{\downarrow}}$ $H = \sum_{\langle i,j \rangle} \left[\lambda_{\mu z} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} \pm \lambda_{\mu \perp} \left(\hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x} + \hat{\sigma}_{i}^{y} \hat{\sigma}_{j}^{y} \right) \right]$ $\lambda_{\mu\perp} = \frac{t_{\mu\uparrow}t_{\mu\downarrow}}{U_{\uparrow\downarrow}}$

L.M. Duan et al., PRL **91**, 090402 (2003), E. Altman et al., NJP **5**, 113 (2003), A.B. Kuklov et al. PRL **90**, 100401 (2003)

Superexchange induced flopping

Measured Frequencies

Controlling Superexchange Interactions

Controlling Superexchange Interactions

Time evolution under action of ferromagnetic superexchange

 $H_{eff} = -J_{ex}\vec{S}_i \cdot \vec{S}_j$

Controlling Superexchange Interactions

From ferromagnetic to antiferromagnetic superexchange interactions

 $H_{eff} = -J_{ex}\mathbf{S}_i \cdot \mathbf{S}_j \qquad \longrightarrow \qquad H_{eff} = +J'_{ex}\mathbf{S}_i \cdot \mathbf{S}_j$

Arrays of Entangled Bell Pairs

Large Entangled States - Entanglement Knitting

Nonlinear Quantum Spin Dynamics in Bose-Einstein Condensates

From Spin Squeezing to Schrödinger Cats - Nonlinear Quantum Spin Dynamics -

What happens if you tune interactions in larger ensembles?

$$\begin{aligned}
\left(\hat{a}^{\dagger} + \hat{b}^{\dagger}\right)^{\otimes N} |0\rangle \\
\hat{H} = \chi \hat{S}_{z}^{2}
\end{aligned}$$

$$\chi = a_{aa} + a_{bb} - 2a_{ab}$$

(2003)

MAINZ Contributions

• WP2 Addressing, manipulating and measuring on single sites D5 Addressing single sites in optical lattices, M2.2

• WP3 Two-qubit gates and compatible stable qubits

D6 Assessment of experimental feasibility for existing qubit encodings and quantum gate schemes, M3.2, M3.5

D7 Novel two-qubit gate schemes, M3.7

• WP4 Generation and characterization of multi-particle entangled states

D8 Experimental generation of multi-particle entanglement in optical lattices, M4.1, M4.2, M4.3, M4.7

D9 Measures and measurement procedures for multi-particle entanglement, M4. I

WP5 Strategies for minimizing decoherence

D11 Experimental realization of optical lattices with minimized decoherence M5.1, M5.3, M5.4, M5.5, M5.6

Summary & Outlook

- Creation and loading of atoms in optical superlattices
- Single Qubit State Manipulation
- Massively Parallel Creation of Bell Pairs
- Characterization of Bell Pairs
- Measurement of Coherence Time of Single Qubits and Bell Pairs
- Controllable Superexchange Spin-Spin Interaction
- Novel Multiparticle Entanglement Schemes for Generation of Robust MP Entangled Quantum States
- Multiparticle Entanglement via Spin-Squeezing in ID Quantum Systems
- Investigation of Dynamical Effects in Mode-Squeezed ID Luttinger Liquids
- How defect free can we create array of Bell pairs?
 - Can we observe dynamical effects of quantum spin systems an compare to advancec
- onumerical methods?
- How longlived can multiparticle states be with zero magnetization?
- Can we create/engineer topologically ordered quantum states and use them for topological quantum computation?

FP6-2002-IST-C